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Radial Line Band Rejection Filters

in Coaxial Waveguides

DAN VARON, MEMBER, IEEE

A bsfraci—A coaxial wavegnide with a cylindrical cavity forming a
double discontinuity in the outer conductor is known to serve as a hand

rejection filter in the microwave region. A variational principle is applied

to calculate the rejection frequency and a subsequent analysis is con-

ducted to determine the dependence of that frequency on various param-

eters of the structure. Results are presented graphically and by simple

analytical formulas. They demonstrate a newly discovered relationship

between the rejection frequency and tbe width of the cavity, and provide

design information which enables prediction of the rejection frequency

within a 1 percent accuracy.

INTRODUCTION

A

MONG THE SIMPLEST and least expensive struc-

tures that serve as band rejection filters in the micro-

wave region is the coaxial waveguide with a cylindri-

cal cavity forming a discontinuity in the outer conductor

(Fig. 1). The band rejection properties of such structures are

exploited in multiple frequency circuits, such as parametric

amplifiers, [11where frequency separation has very stringent

requirements. When the outer conductor of a coaxial wave-
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guide is perturbed to form a cylindrical cavity, the TEM

mode is totally reflected at a resonant frequency that depends

on as many as six parameters. These are the inner and outer

radii of the coaxial line, the radius and width of the cavity,

and the dielectric constants of the cavity and the line. The re-

jection frequency is more sensitive to some parameters than

to others. Experience indicates that in restricted regions cer-

tain approximate methods, in which the effects of one or

several of the less sensitive parameters are neglected, provide

remarkably accurate results. However, there are discrepancies

of 5 percent or more in other regions where the same approxi-
mations ought to be valid. [11’[21 The approximations most

frequently used by filter designers correspond to either one

of the following situations: a) total disregard of the fringing

fields caused by the two close discontinuities in which case

the cylindrical cavity is viewed as a series impedanee equal to
the input impedance of a shorted radial transmission line ;[SI

orb) consideration of the fringing fields associated with each

discontinuity but neglect of the interaction between the two.

In the latter, the discontinuities are accounted for by equiva-

lent shunt-lumped reactive elements; however, they must be

far enough apart so that the interaction is indeed negligible.

A common feature of both eases is that they neglect to con-

sider the cavity width.
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Fig. 1. Radial line coaxial filter.

The following study is motivated by the objective of gain-

ing further understanding of the relationship between the

rejection frequency and the physical parameters of the struc-

ture, in particular the width of the cavity. This is accom-

plished by a solution which very accurately predicts the re-

jection frequency. This high accuracy is obtained by con-

sideration of all six parameters mentioned. Only second-

order effects such as losses in conductors and dielectrics are

neglected.1 As a result, new quantitative data are obtained

over a very wide band in the microwave region where co-

axial lines are practical.

The analysis includes a representation of the double dis-

continuity by a symmetric two-port, [41 whose admittance

matrix Y is derived from a variational principle. [b] Through

application of the Rayleigh-Ritz method, [51 the points of

infinite insertion loss are computed by finding the zeros of

the ylz element of Y.

The results are presented as families of curves, computed

on a normalized basis, with the resonant wavelength in the

cylindrical cavity as a natural unit of length. The same re-

sults are also given in terms of analytical formulas in various

regions of the normalized parameters. The calculated results

agree with experimental measurements within 1 percent.

THEORETICAL ANALYSIS

De$nitions

Let the structure be placed in a right-handed cylindrical

coordinate system (Fig. 2) the origin of which coincides with

the center of the cylindrical cavity, and whose axis coin-

cides with that of the coaxial waveguide. The following nota-

tion is adopted for the physical parameters pertinent to the

analysis:

a= inner radius of coaxial waveguide

b= outer radius of coaxial waveguide

d= outer radius of cavity

2h = width of cavity

eo= dielectric constant of air

~~= relatlve dielectric constant of the medium inside the
coaxial waveguide (a< r< b, z> I hl )

6t = relatiVe dielectric constant of the medium inside the
cavity (a<r<d, z< lhl)

PO= permeability of free space.

1Losses are essentialin obtaining data on actual re@tion. In a loss-
lessstructure the insertion loss is intinite at the rejection frequency.

&::—.—.—-+-—-—.—.—+z
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Fig. 2. Longitudinal cross section (inner dimensions),

T
o

Fig. 3. Equivalent circuit for the TEM mode.
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Fig. 4. (a) Short-circuit biseetion. (b) Open-circuit bisection.

The conducting walls are considered perfect, and the di-

electric media are assumed to be Iossless. The radii a and b

are such that only the TEM mode can propagate in the co-

axial line.

Formulation

The main’ interest in this problem is to find under what

conditions the TEM mode will be totally reflected by the

double discontinuity. The entire structure may be represented

by an equivalent circuit to the TEM mode wherein the co-

axial waveguide is represented by a uniform transmission

line and the cylindrical cavity by a symmetric m network.

That equivalent circuit is shown in Fig. 3. To find the two

unknown admittances Y~ and YB, two linearly independent

excitations, a symmetrical and an antisymmetrical one, are

chosen. With those particular excitations the symmetry plane

z= O behaves like a magnetic wall for symmetrical excitation

and like an electric wall for the antisymmetrica[ one. Conse-

quently, the structure may be bisected at z= Oand terminated

alternately by an open- and short-circuit boundary. Thus,

the problem of the double discontinuity is reduced to two

similar problems of a terminated coaxial waveguide with

only one step discontinuity, as shown in Fig. 4. A field

analysis in both cases yields variational expressions for the

open- and short-circuit input admittances at z= —h, From

which the resonance condition YA(ti) = O can be readily ob-

tained.
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Field Analysis

An incident TEM wave propagating in the positive z
direction is partly reflected by the discontinuity and partly

transmitted through the inter~ace between the coaxial

guide and the bisected cavity. The transmitted wave is

totally reflected at z= O, thus forming a standing wave in

the cavity. Also, the discontinuity gives rise to an infiite

number of higher-order TMo. modes in both regions. If a

time harmonic dependence e’” ~ is assumed, the transverse

components of the electromagnetic field are given as follows.

1) In the coaxial guide (– @ <z< –~)

Ao(i)

Erl(~)(r, 2!) = y [e-,? a(z+k) + &@cI(.+hJ]

where i= 1 is to be taken for the case of open-circuit bisec-

tion and i= 2 for short-circuit bisection; R, is the reflection

coefficient of the TEM mode at the plane of the disconti-

nuity, kl= c&wJ1’2, m= (PO/COW’2

c&(r) = JO(~na) yl(~n~) – yO(La)Jl(M

ct<r<~ (3)

where JP(x) and YP(x), p =0, 1, are the Bessel and Neumann

functions of order p, and {X.}, n= 1, 2, -.. , co, are eigen-
values which satisfy

.lO(k.a) Yo(Lb) – YO(X.a)~O(Xn~) = O

n=l,2. ... m.) (4)

P. is determined by the dispersion relation

Amp+ L2 = k12. (5)

The aforementioned assumption that all higher-order modes
in z< —h are evanescent implies X.> kl and A= –j[ B. 1,

n>l.

2) In the cavity (–h-S zSO)

Be(i) .

E,,(’) (?”,2!) = — Ti(k,z) + ~ B.(%(r) T’,(G2)
r n,= 1

Bo(O

~82(0 (~, ~) = — !f’i+l(kzz)

q 2r

where

and the choice of i is the same as the foregoing.

(6)

(7)

(8a)

(8b)
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c&(7-) = Jo(u.a) YI(u.T) – YO(Una)Jl(Un~) (9)

with {O. } being a set of eigenvalues satisfying

Jo(una) Yo(ufid) – F0(ana)J0(ffno3 = o

n=l,2, . . ..m. (lo)

K. is given by the dispersion relation

Wn2+ Kn2= kgz (11)

where kz = u(ymd /2and q.z= (1.w/eOeJ112.

The eigenfunctions {I&(r)] and {d.(r)] satisfy the follow-

ing orthogonality conditions: [71

J
b

s

cjn(r)dr = ‘ “&(r)dr = O n = 1, 2, . . ., cc (12a)
a a

s

b

@.(r) @fi(r)rdr = Nn2&~ n, m = 1,2, . . . . m (12b)
.

s

d

&(7’) &(?j?Yh = sn%nm ‘n, ‘m = 1, 2, “ “ “ , @ (1%)
a

where

{

1 n=m
6~m =

o n+m.

(13a)

(13b)

(13C)

At the interface z = – h the radial electric and circumferen-

tial magnetic field components satisfy the following con-

tinuity conditions:

-E,l(’) (7-;–h) = E.*(’)(r, –h) a~r<b (14a)

Hn(~)(r, –h) = Hb’’(~)(r, –h) i=l,2 (14b)

E!.2(~)(r, –h) = o b~r<d. (14C)

At this stage of the anaIysis the unknown quantities are

R;, A~+l(LJ, and B.(i), i= 1, 2; n=O, 1, 2 . ~ . , ~, whereas

Aoc~) is an arbitrary normalization constant. By using the

orthogonality property of the eigenfunctions @n(r) and &(r),

all unknown constants may be written in terms of the aper-

ture field I&f;) (r, – h), which henceforth will be denoted

simply by E,(r). Also, whenever the index i appears it will be

understood that i= 1, 2.
Integrating (1) at z= – h and using (12a) gives

1

s

b

Ao(’j(l + R,) = EJr)dr.

()

(15)

ln~”
a

Multiplying (1) by r~~(r)dr and integrating yields

m=l,2, . . ..~. (16)

Similarly, from (6) and (14a) the coefficients B~(i) are found to

be
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1

s

b

BiJ(~)T’J-k,h) = EL(r)dr

()

(17)

ln~a
a

m=l,2. ... m.1 (18)

The integrations on the right-hand side of(17) and (18)
are carried only from a to b, since E,(r)= O, b ~ r< d. Substi-

tution of(15) through (18) into (14b), via (2) and (7) gives

s

b b

yi E,(r’)dr’ = JI K,(r r’)E,(r’)dr’ (19)
a a

where

(20)

1–R,
y%=—.

l+R,
(Ql)

The constant y; is recognizable as the normalized input

admittance into the bisected cavity at the plane of discon-

tinuity. Thus, yl is the normalized open-circuit bisection ad-

mittance, and y? is the normalized short-circuit bisection ad-

mittance. Kernel K,(r I r’) is symmetric and purely imagi-

nary. Constant j( = < – 1) appears implicitly in (20). This

may be verified by returning to (8) and to the paragraph be-

tween (5) and (6). Hence, y; is reactive.

Equation (19) is an integral equation in which the un-

known function is the aperture field E,(r), and the input ad-

mittance y~ is its characteristic value. A variational principle

for yi is obtained by multiplying the integral equation on

both sides by E,(r)dr and integrating from a to brsl

b

Ss

b

E,(r)K,(r [ r’)ll;(r’)dr’dr
all

y, =

[_bEodr]” ~ (22)

For the true value of Ill,(r) the absolute value of y, is mini-

mum and stationary. That is to say that an approximation to

first order in E,(r) gives an approximation to second order

in y ~.

A natural choice of a minimizing sequence[gl for E,(r) is

its truncated modal expansion. Let

where {+.(r) ] is a complete orthogonal set defined by (3)

and (4). Denote by y~(’1 the value obtained by substituting

EJLJ(r) for l?,(r) in (22). By the Rayleigh-Ritz method[Gl if

the amplitude coefficients a.(i) are chosen so as to yield

a minimum value of ]y.v(’) I for every N, then when

N+ ~, E~ti)(r) approaches the true aperture field E,(r) and

y.Y(’) approaches the true input admittance y,. The coeffi-
cient aO(J may be chosen as an arbitrary normalization con-

stant. Substitution of (23) into (22) yields

where

,=, = {;

To minimize Iy.V@I consider

variables by rewriting (24) as

P=1,2, . . ..N @7a)2

1,~, . . ..m (~7b)

S=p

s#p. (28)

y~(’) as a function of N+ 1

j[ao(’), . . ., aN’t)]
y,,,(t) . ——

g[a,(i)j

The minimizing coefficients satisfy the following set of N+ 1

equations

~~N(t)
—= o
~ap(l) P= 0,1, .O”, N. (30)

(JO(i)
EN(C (r) = — i- sa.(’) qh(r) N >1 (23)

‘r %=1 2SeeG. N. Watson. [71
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That set can be reduced to N+ 1 linear algebraic equations

by carrying out partial differentiations on (29) and letting

the numerator vanish

Dividing through by 2gaOtiJ and

p> O one obtains

p=o, l,. ... N. (31)

noting that dg/daptiJ = O if

()_ln -! ~N(i) + ~ Qo, (~)a, (t) = –Qoo(i) (32a)
a 8=1

~ Qp,(’)a.(’) = –Qo=@J p = 1,2, -.. , N (32b)
s= 1

where

~, (i)
~,(c = — S=1,2, . . ..N. (32c)

aO(i)

In (32) yivti) is one of the unknowns and it can be expressed

in closed form as

1 det (Q,)
yN(o = (33)

()

det (Qi”)
in L

a

where

Qi = ]lQsp(i)l] $P=0,1,2, ”’”, N

Q,~ = l]Q,p(~)ll s,p=l,2, . . ..N.

By proper choice of N the true input admittance y~ may be

approximated by yN(i) and the resonance condition obtained

by equating

v,(a) = !/Z(u). (34)

A comparison of calculated and measured data shows that

choosing N= 5 yields an accuracy within 1 percent. In view

of the complexity of (34) a digital computer must be used to

obtain quantitative data.

DISCUSSION OF THE RESULTS

As a consequence of the scaling property of the. electro-
magnetic field, the numerical work to solve (34) can be car-

ried out on a normalized basis by expressing all linear dimen-

sions in terms of a natural unit of length. This results in con-

siderable economy in computing and data presentation over

a wide range of frequencies. The normalization factor chosen

in Figs. 5 through 11 is the wavelength X, in the medium fill-

ing the cavity at the rejection frequency f,= (x,<G)–I.
Every point on the curves yields, by unnormalization, the

dimensions of a filter which rejects that frequency whose cor-

responding wavelength inside the cavity is the unnormaliz-

ing factor. In each one of Figs. 5 through 9 the normalized

MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1967

length of the cavity L = (d– b)/& is plotted against the nor-

malized outer radius of the coaxial line B= b/& for various

values of the normalized half-width of the cavity H= h/h.

Each set of curves is plotted at constant characteristic im-

pedance of the coaxial line

(35)

Figs. 5 through 7 are for 50 ohm lines with air and poly-

ethylene dielectrics; and Figs. 8 and 9 are for minimum loss
Iines[lOl of 92.6 ohms.

It is interesting to compare the results with those obtained

by Schelkunoff for the input admittance of a shorted radial

transmission line. [31In Fig. 10 the curve marked S is nor-

malized to the wavelength at which the radial transmission

line has zero input admittance. The curve is given by

Jl(2?rB) Yo(27rD) – J!)(27rD) Yl(27rB) = o (36)

where

D=L+B (37)

and JP(x), YP(x), p = O, 1, are the Bessel and Neumann func-

tions of order p. The derivation of (36) totally neglects the

fringing fields at the input edge. Plot S is independent of the

characteristic impedance of the coaxial line and of the cavity

width. Therefore, it can be assumed that this curve consti-

tutes a good approximation for very small values of H for

which the fringing fields due to the double discontinuity are

negligible. The question that remains to be answered is how

small is “very small.” The answer is found in Fig. 10 by com-

paring curves for various values of H with S. It can be seen

that for H< 0.001 the constant H curves approach S very

closely. Hence, one may interpret S as an asymptotic curve

for H-+0. The fact that curves for larger values of H cross

the asymptotic curve indicates that L is a double valued

function of H at constant B, This is illustrated more clearly

in Fig. 11. Even though values of H< 0.001 are too small for

practical applications in the microwave region, the asymp-

totic curve has served occasionally as a rather successful pre-

dictor of the rejection frequency. This is explained by the

crossover of the asymptote by the actual curves at values of

H two orders of magnitude larger than those at which final

approach to the asymptote occurs.

The calculated results may be given in restricted regions

by simple formulas of the following general form:

L = a. + a,H – CWB+ CY$HB. (38)

The coefficients { aj} ,j= 0,..., 3, are given in Tables I through

HI. The values obtained from (38) are within 0.5 percent of

those obtained by the variational method if strict adherence

to the specified regions is observed.

The rejection frequency calculated by the variational

method agrees within 1 percent with experimental measure-

ments by DeLoach, Jr., [l] and also with those performed by

this author. The latter are summarized in Table IV.
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Fig. 5. Normalized cavity length versusnormalized outer
radius of coax for 50 ohm line air filled.
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Fig. 6. Normalized cavity length versus normalized outer radius of
coax for 50 ohm line air-filled coax and polyethylene-filled cavity.
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Fig. 8. Normalized cavity length versus normalized outer
radius of coax for 92.6 ohm line air filled.
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Fig. 9. Normalized cavity length versus normalized outer radius of
coax for 92.6 ohm line air-filled coax and dielectric-filled cavity.
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TABLE I

20=50 ohms, ,C= 1.00

et RH’ R,t ~o al ffz a3

1.00 I H 0.363
1.00 I III 0.343
1.00 H I 0.375
1.00 II II 0.365
1.00 H HI 0.343
2.32 1 II 0.361
2.32 I III 0.338
2.32 11 I 0.375
2.32 11 11 0.364

2.32 1[ 111 0.336
5.00 I 11 0.359
5.00 I IJI 0.336
5.00 11 I 0.375
5.00 II 11 0.363
5.00 H 111 0.335

* RE: I +.03< H<0.05

0.356
0.412
0.219

0.322
0.429

0.384

0.439

0.220

0.329
0.482
0.407
0.447
0,221
0.335
0.464

0.564
0.364
0.879
0.659
0.432
0.520
0.306
0.872
0.632
0.363
0.486
0.269
0.868
0.611
0.342

–0.952
–1.577

3.108
0.901

–0.329
–1.480
–1.970

3.051
0.719

–0.874
–1.881
–2.160

2.949
0.579

–0.810

H -0.05 ~H~0.10
~ R.: I -0. O1<B<O.05

11 +. O5<B<O.1O
HI-0.10<B<0.20; L> O.29O

TABLE 11

ZO= 50 ohms, ~. =2.32

et Rx” R~t ~o al ~z CY3

2.32 I I 0.379 0.145 0.849 1.463
2.32 I H 0.362 0.280 0.564 –1.085
2.32 11 I 0.376 0.203 0.884 2.166
2.32 II 11 0.361 0.319 0.624 –0.014
2.32 H 111 0.342 0.387 0.437 –0.843

*RH: 1 4.03< H<0.05
II -O. O5<H<O.1O

t R.: I 4.005 <B<0.06
H-O.06<B<0.11
111—0.11<B<0.185 ;L>0.285

TABLE III

ZO=92.6 ohms, ,,= 1.00

et RH* R,? ffO al ff2 ffz

1.00 I I 0.378 0.126 0.873 1.297
1.00 11 I 0.374 0.216 0.805 0.962
1.00 H 11 0.344 0.407 0.450 –1.423
5.00 I 1 0.377 0.150 0,799 0.101
5.00 11 I 0.374 0.201 0.822 1.320
5.00 II II 0.344 0.375 0.408 –1.397

—

* RH: I -0.035 H<0.05
II-O .O5<H<O.1O

I R,: I +.0055 BS0.070

11-O.070<B<0.150

TABLE IV

eg=l. oo, et=l. oo

0.217 0.500 6.000 0.772
0.217 0.500 6.000 1.455
0.869 2.000 6.000 1.196
0.869 2.000 6.000 0.054
0.869 2,000 6.000 0.802
0.087 0.200 8.000 2.017
0.087 0.200 8.000 0.322
0.869 2.000 6.590 0.724
0.869 2.000 7.749 0.724

* Calculated resonant frequency.
t Measured resonant frequency.

1.557
1.623
1.829
1.770
1.770
1.185
1.133
1.563
1.284

1.557 0.00
1.622 0.06
1.828 –0.05
1.767 –0.17
1.771 0.06
1.186 0.08
1.136 0.26
1.563 0.00
1.285 0.08

SUMMARY AND CONCLUSIONS

The resonant frequency of a microwave radial line band

rejection filter in a coaxial waveguide has been calculated by

a variational method. The dependence of the resonant fre-

quency on the physical parameters of the structure has been

investigated and presented both graphically and analytically.

It has been shown that the resonant frequency calculated by

viewing the cylindrical cavity as a shorted radial transmis-

sion line is asymptotic to the true frequency when the cavity

width is infinitesimally small with respect to the wavelength.

Further, an explanation has been given why good results are

obtained under certain conditions when total neglect of the

fringing fields is not justified. A comparison of calculated

results with experimental measurements shows agreement

within 1 percent.
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A Computer Designed, 720 to 1

Compression Filter

HARRY S. HEWITT, MEMBER, IEEE

Microwave

Absfract—Compression filters with bandwidths up to 1000 MHz have

application in high-reaolution radar systeqm and rapid-scan receiver

systems. A technique is presented for realizing a microwave linear delay

(qnadratic phase) versus frequency compression filter with sufficient delay

accuracy to make compression ratios of up to 1000 to 1 feasible.

The dispersive element in the compression filter is a silver tape with

its broad side placed perpendicularly between the ground planes (instead

of parallel, as in conventional stripline). The tape is folded back and forth

upon itself in such a way that substantial coupling takes place between

adjacent turns of the tape. A computer program has been written to

determine the dimensions of the tape to achieve a linear delay versus fre-

quency characteristic.

A folded tape compression filter was coustrncted with a differential

delay of 1.2 PSover a bandwidth of 600 MHz centeredat 1350MHz giving
a compressionfactor of 720 to 1. Thk filter wasconstructedin four iden-

tical sections, each section of which had a differential delay of 0.3 PSover

the same bandwidth as the complete filter. The entire filter (four sections)

occupies a volume about 16 by 4 by 5 inches. Measurement data are pre-

sented which illustrate that the desired accurate delay characteristic was

realized to within the ~ 1 ns measurement uncertainty.

INTRODUCTION

I

N RECENT YEARS much attention has been focused

on the use of pulse compression in “Chirp” radar sys-

tems. Typical pulse compression filters used in these

systems have bandwidths of a few megahertz or less and

differential time delays of up to several hundred micro-
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seconds. Somewhat less attention has been given to the

development of radar and receiver systems using microwave

compression filters, one reason probably being that no satis-

factory tehnique for designing and constructing compression

falters with band widths of hundreds of megahertz existed.

The pulse compression filter is a device for decreasing the

time duration of, or compressing, a frequency modulated

pulse of RF energy. This compressed pulse is used to improve

the resolution or scan-rate capability of systems which use

an RF pulse to indicate some parameter to be measured.

The search for devices which could be used to make micro-

wave pulse compression filters has led investigators to study

a variety of techniques. These include the dispersive helix; [11

the tapped delay line with tuned taps; [21,[31the tapped delay

line with broadband untuned taps ;[41first- and second-order,

allpass quaterwave coupled transmission lines; [51 the

yttrium-iron-garnet delay line ;[81 and the folded tape

meander line (FTML). [71 The FTML was chosen as a de-

sirable structure for implementing a large time-bandwidth

product compression filter because of its relatively easily

predictable performance, its compact size, and its compara-

tively low cost.

THE FOLDED TAPE MEANDER LINE

Fig. 1 shows the physical configuration of the FTML and
defines the dimensions used in equations to follow. The

meander line is totally immersed in dielectric; this assump-

tion is maintained throughout the text of this paper. In prac-

tice, this is quite easy to accomplish; two sheets of dielectric


