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Radial Line Band Rejection Filters
in Coaxial Waveguides

DAN VARON, MEMBER, IEEE

Abstract—A coaxial waveguide with a cylindrical cavity forming a
double discontinuity in the outer conductor is known to serve as a band
rejection filter in the microwave region. A variational principle is applied
to calculate the rejection frequency and a subsequent analysis is con-
ducted to determine the dependence of that frequency on various param-
eters of the structure. Results are presented graphically and by simple
analytical formunlas. They demonstrate a newly discovered relationship
between the rejection frequency and the width of the cavity, and provide
design information which enables prediction of the rejection frequency
within a 1 percent accuracy.

INTRODUCTION

MONG THE SIMPLEST and least expensive struc-
A tures that serve as band rejection filters in the micro-
wave region is the coaxial waveguide with a cylindri-

cal cavity forming a discontinuity in the outer conductor
(Fig. 1). The band rejection properties of such structures are
exploited in multiple frequency circuits, such as parametric
amplifiers,”! where frequency separation has very stringent
requirements. When the outer conductor of a coaxial wave-
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guide is perturbed to form a cylindrical cavity, the TEM
mode is totally reflected at a resonant frequency that depends
on as many as six parameters. These are the inner and outer
radii of the coaxial line, the radius and width of the cavity,
and the dielectric constants of the cavity and the line. The re-
jection frequency is more sensitive to some parameters than
to others. Experience indicates that in restricted regions cer-
tain approximate methods, in which the effects of one or
several of the less sensitive parameters are neglected, provide
remarkably accurate results. However, there are discrepancies
of 5 percent or more in other regions where the same approxi-
mations ought to be valid.!N'® The approximations most
frequently used by filter designers correspond to either one
of the following situations: a) total disregard of the fringing
fields caused by the two close discontinuities in which case
the cylindrical cavity is viewed as a series impedance equal to
the input impedance of a shorted radial transmission line ;!
or b) consideration of the fringing fields associated with each
discontinuity but neglect of the interaction between the two.
In the latter, the discontinuities are accounted for by equiva~
lent shunt-lumped reactive elements; however, they must be
far enough apart so that the interaction is indeed negligible.
A common feature of both cases is that they neglect to con-
sider the cavity width.
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Fig. 1. Radial line coaxial filter.

The following study is motivated by the objective of gain-
ing further understanding of the relationship between the
rejection frequency and the physical parameters of the struc-
ture, in particular the width of the cavity. This is accom-
plished by a solution which very accurately predicts the re-
jection frequency. This high accuracy is obtained by con-
sideration of all six parameters mentioned. Only second-
order effects such as losses in conductors and dielectrics are
neglected.! As a result, new quantitative data are obtained
over a very wide band in the microwave region where co-
axial lines are practical.

The analysis includes a representation of the double dis-
continuity by a symmetric two-port,[ whose admittance
matrix Y is derived from a variational principle.? Through
application of the Rayleigh-Ritz method,!s! the points of
infinite insertion loss are computed by finding the zeros of
the yy; element of Y.

The results are presented as families of curves, computed
on a normalized basis, with the resonant wavelength in the
cylindrical cavity as a natural unit of length. The same re-
sults are also given in terms of analytical formulas in various
regions of the normalized parameters. The calculated results
agree with experimental measurements within 1 percent.

THEORETICAL ANALYSIS

Definitions

Let the structure be placed in a right-handed cylindrical
coordinate system (Fig. 2) the origin of which coincides with
the center of the cylindrical cavity, and whose axis coin-
cides with that of the coaxial waveguide. The following nota-
tion is adopted for the physical parameters pertinent to the
analysis:

a=inner radius of coaxial waveguide
b=outer radius of coaxial waveguide
d=outer radius of cavity
2h=width of cavity
eo=dielectric constant of air
e, =relative dielectric constant of the medium inside the
coaxial waveguide (a<r<b, z>|h])
e.=relative dielectric constant of the medium inside the
cavity (a<r<d, z< ] hl)
po=permeability of free space.

1 Losses are essential in obtaining data on actual rejection. In a loss-
less structure the insertion loss is infinite at the rejection frequency.
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Fig. 4. (a) Short-circuit bisection. (b) Open-circuit bisection,

ELECTRIC WALL
N

The conducting walls are considered perfect, and the di-
electric media are assumed to be lossless. The radii @ and b
are such that only the TEM mode can propagate in the co-
axial line.

Formulation

The main interest in this problem is to find under what
conditions the TEM mode will be totally reflected by the
double discontinuity. The entire structure may be represented
by an equivalent circuit to the TEM mode wherein the co-
axial waveguide is represented by a uniform transmission
line and the cylindrical cavity by a symmetric = network.
That equivalent circuit is shown in Fig. 3. To find the two
unknown admittances Y4 and Yp, two linearly independent
excitations, a symmetrical and an antisymmetrical one, are
chosen. With those particular excitations the symmetry plane
z=0 behaves like a magnetic wall for symmetrical excitation
and like an electric wall for the antisymmetrical one. Conse-
quently, the structure may be bisected at z=0 and terminated
alternately by an open- and short-circuit boundary. Thus,
the problem of the double discontinuity is reduced to two
similar problems of a terminated coaxial waveguide with
only one step discontinuity, as shown in Fig. 4. A field
analysis in both cases yields variational expressions for the
open- and short-circuit input admittances at z=—7, from
which the resonance condition Y.(w)=0 can be readily ob-
tained.
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Field Analysis

An incident TEM wave propagating in the positive z
direction is partly reflected by the discontinuity and partly
transmitted through the interface between the coaxial
guide and the bisected cavity. The transmitted wave is
totally reflected at z=0, thus forming a standing wave in
the cavity. Also, the discontinuity gives rise to an infiite
number of higher-order TMo, modes in both regions. If a
time harmonic dependence e:w¢ is assumed, the transverse
components of the electromagnetic field are given as follows.

1) In the coaxial guide (— o <z< —h)

Ao

Eq9(r, 2) = [e=ertethy 4 Rei1 1]

+ 22 4uDgu(r)ens (1)
n=1

A,@

Ho 0 (r, 2) = [e——;k1(2+h) — Rlejkl(z—l»h)]

mr
l L ks .

— 2, 4. Gu(MePn =12 (2)
n=1 718

where i=1 is to be taken for the case of open-circuit bisec-
tion and 7=2 for short-circuit bisection; R, is the reflection
coefficient of the TEM mode at the plane of the disconti-
nuity, ki=w(koeoeq) %, M= (uo/ eoey)'*
$a(r) = Jo\a@) Y1) — Yo(Aa)J 1(Me7)
a<r<b (3
where J(x) and Y,(x), p=0, 1, are the Bessel and Neumann

functions of order p, and {)\n}, n=1,2, - - -, o, are eigen-
values which satisfy

Jo()\na) Yo()\nb) - Yo()\na)Jo()\nb) =0

n = ]-} 27 o, . (4)
B, is determined by the dispersion relation
kn2 + ﬁnz = klz' (5)

The aforementioned assumption that all higher-order modes
in z< —h are evanescent implies »,>k; and B.= —j { Bn\ s
n>1.

2) In the cavity (~2<z<0)

Bo(i) ) .
B (r, 2) = —— Ti(ks) + 2 Ba®¢a()Ti(kaz)  (6)
T

n=1
B,®
H{)z(i)(T, Z) = TH—I(’CZZ)

nal

il k

+ Y B Tialk?) i=1,2 (7
n=1 N2Kn
where

T.(x) = Ts(x) = cosx (8a)
Ty(x) = — jsine (8b)

and the choice of i is the same as the foregoing.
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éa(r) = Jo(040) Yi(ouwr) — Yo(oat)J 1(owr) (9)
with {c,} being a set of eigenvalues satisfying

Jo(020) Vio(ond) — Yo(ona)S o(oxd) = 0

n=1,2---,». (10)
k. 18 given by the dispersion relation
on? 4 Kt = kog? (11)

where kz-_—w(ﬂoéoét)l 2 and 1)2=(p.0/60€t)1/2.
The eigenfunctions {¢.(r)} and {$.(r)} satisfy the follow-
ing orthogonality conditions: "

b d
f da(r)dr =f Gu(r)dr =0 n=1,2---,» (12a)

b
f Gu(N)bn(r)rdr = Np28um n,m = 1,2, - - -, o (12b)
d
f G bu(r)rdr = Su2um n,m = 1,2, - -+, (12¢)
where
b2
2 = p—
Nt = 60) = —— (13)
d2
Sn2 = An,z d - 13b
2 #:*(@) 7,2 (13)
5 = {1 n=m
e 0 n # m. (13¢)

At the interface z= — & the radial electric and circumferen-
tial magnetic field components satisfy the following con-
tinuity conditions:

Ea®(r, —h) = E®(r, —h) a<r<b (14a)
HuO(r, —h) = Hp®(r, —h) i=12 (14b)
Eno®(r, =h) = 0 b<r<d. (14¢)

At this stage of the analysis the unknown quantities are
R; A, 1@, and B,®, i=1, 2; n=0, 1,2 - . -, «, whereas
Ao is an arbitrary normalization constant. By using the
orthogonality property of the eigenfunctions ¢,(r) and ¢,(r),
all unknown constants may be written in terms of the aper-
ture field E»® (r, —h), which henceforth will be denoted
simply by E.(r). Also, whenever the index i appears it will be
understood that /=1, 2.

Integrating (1) at z= — & and using (12a) gives

AeO(1 + R = *}b_bez(r)dr. (15)
()
a
Mutltiplying (1) by r#¢n(#)dr and integrating yields
A, Deg—ibnh — ﬁlzzfabEi(rwm(r)rdr
m=1,2---, 0. (16)

Similarly, from (6) and (14a) the coefficients B, are found to
be
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1 b
BT, (—ksh) = 7f E.(r)dr 17
In <~> ‘
a
1 b
BT () = — [ Bgurar
m=1,2 ... . (18)

The integrations on the right-hand side of (17) and (18)
are carried only from a to b, since E,(r)=0, b<r <d. Substi-
tution of (15) through (18) into (14b), via (2) and (7) gives

yibe',(r’)dr' = fbKl(r, rYE, (" )dr' (19)

where

Gl = m( )N Tinlhh
ol = () f(z)” 0 (4)

. i [i Top1(—xah)

n=1 L €5 KnSn2Ti(_Knh>

$n(r)n(r')

+ Ezlv“ ok 20)

1—R;
14 R,

Ys 21

The constant y, is recognizable as the normalized input
admittance into the bisected cavity at the plane of discon-
tinuity. Thus, y; is the normalized open-circuit bisection ad-
mittance, and y, is the normalized short-circuit bisection ad-
mittance. Kernel K,(r|#) is symmetric and purely imagi-
nary. Constant j(=+/—1) appears implicitly in (20). This
may be verified by returning to (8) and to the paragraph be-
tween (5) and (6). Hence, y, is reactive.

Equation (19) is an integral equation in which the un-
known function is the aperture field E.(r), and the input ad-
mittance y; is its characteristic value. A variational principle
for y; is obtained by multiplying the integral equation on
both sides by E(r)dr and integrating from a to b!#

f b f bE’(”)Kl‘(” r) Bi(r')dr'dr

[[Fron]

For the true value of E(r) the absolute value of V. 18 mini-
mum and stationary. That is to say that an approximation to
first order in E(r) gives an approximation to second order
in Vi

A natural choice of a minimizing sequence!® for E(r) is
its truncated modal expansion. Let

(22)

Y. =

(%) N

+ 2 aDu(r) N>1 (23

r =1

Qo

Ex®(@) =
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where {¢n(r)} is a complete orthogonal set defined by (3)
and (4). Denote by yx? the value obtained by substituting
Eyx®(r) for E(r) in (22). By the Rayleigh-Ritz method!® if
the amplitude coefficients 4,V are chosen so as to yield
a minimum value of |yy©| for every N, then when
N—oc, Ex((r) approaches the true aperture field E,(r) and
yx( approaches the true input admittance V.. The coeffi-
cient a,» may be chosen as an arbitrary normalization con-
stant. Substitution of (23) into (22) yields

N
>
—0 p=

B
Z/N(U - - —

()
1/? [m (%)T Toa(—kah)

— 4
T —koh) 7

N
a,Da,OQ,,
0

(24)
where

Qop(i) = on(i) =

Ti+1('—K,Jl) Pn11[np2

()
€ n=1

T.(—x.h) KniS 2

p=0,1,2, ... N, (259)

N 2 o

Qop™ = Qs =k, [h‘” 8y + & >

:Bp €9 ne—1

To1(—x,h) ﬂ[,,sgjl[,w?:l
S . ) :1727"'7N 25b
TL(-—Kﬂh) KVMS(IL2 : P ( )
with
b 1
P, = f ¢n(7')d7" = [YO(Una)JO(O'nb) —Jﬂ(ffna) Yo(tfnb)]
a Tn
'n:1,2""’°0 (26)
b P.be,(b
1t = [ g = LB
a A\ 2
()
On

n=12 - o p=12 ... N (27a)
My@=P, n=12 -, » (27b)

]_ =

681) = j : p

lo S # p. (28)

To minimize | yy®| consider yy( as a function of N-+1
variables by rewriting (24) as
f[ao(’b), SR aN(z)]

— . 29
g[ao“'j =

Z/N(” =

The minimizing coefficients satisfy the following set of N-+1
equations

dyn®

da,

=0 p=0,1--, N, (30)

2 See G. N. Watson.[7]
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That set can be reduced to N-+1 linear algebraic equations
by carrying out partial differentiations on (29) and letting
the numerator vanish

p=0;1:"'JN- (31)

Dividing through by 2ga,"? and noting that dg/da,? =0 if
p>0 one obtains

b Y o .
——ln<—> yn® 4+ D QoD@ = —Qu®  (32a)
a g=1
N
3 Q@ = —Qp,  p=1,2---,N (32b)
s=1
where
a,®
as(l) — § = 1’ 2’ ceey, N. (320)
aet®

In (32) yx*? is one of the unknowns and it can be expressed
in closed form as

1 det (Qz)
() = 33
" (b det (@) 3
In -——>
a
where
Qi:HQSIT(i)I S,p=0,1,2,-~-,N
QM = ||Q5p(i>H sp=12---,N.

By proper choice of N the true input admittance y; may be
approximated by yx( and the resonance condition obtained
by equating

Yi(w) = ya(w). (34)
A comparison of calculated and measured data shows that
choosing N=5 yields an accuracy within 1 percent. In view
of the complexity of (34) a digital computer must be used to
obtain quantitative data.

DISCUSSION OF THE RESULTS

As a consequence of the scaling property of the electro-
magnetic field, the numerical work to solve (34) can be car-
ried out on a normalized basis by expressing all linear dimen-
sions in terms of a natural unit of length. This results in con-
siderable economy in computing and data presentation over
a wide range of frequencies. The normalization factor chosen
in Figs. 5 through 11 is the wavelength X\, in the medium fill-
ing the cavity at the rejection frequency f,=(\~/moeoe,) "
Every point on the curves yields, by unnormalization, the
dimensions of a filter which rejects that frequency whose cor-
responding wavelength inside the cavity is the unnormaliz-
ing factor. In each one of Figs. 5 through 9 the normalized
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length of the cavity L=(d—b)/\. is plotted against the nor-
malized outer radius of the coaxial line B=b/\, for various
values of the normalized half-width of the cavity H=5h/\,.
Each set of curves is plotted at constant characteristic im-
pedance of the coaxial line

60 b
— In (—) .
Ve a
Figs. 5 through 7 are for 50 ohm lines with air and poly-
ethylene dielectrics; and Figs. 8 and 9 are for minimum loss
lines*9 of 92.6 ohms.
It is interesting to compare the results with those obtained
by Schelkunoff for the input admittance of a shorted radial
transmission line.®! In Fig. 10 the curve marked S is nor-

malized to the wavelength at which the radial transmission
line has zero input admittance. The curve is given by

J1(2xB)Yo(27D) — Jo(27D)Y1(2xB) = 0

Zy = (35)

(36)
where

D=L+B (37

and J,(x), Y,(x), p=0, 1, are the Bessel and Neumann func-
tions of order p. The derivation of (36) totally neglects the
fringing fields at the input edge. Plot S is independent of the
characteristic impedance of the coaxial line and of the cavity
width. Therefore, it can be assumed that this curve consti-
tutes a good approximation for very small values of H for
which the fringing fields due to the double discontinuity are
negligible. The question that remains to be answered is how
small is “very small.” The answer is found in Fig. 10 by com-
paring curves for various values of H with S. It can be seen
that for H<0.001 the constant H curves approach S very
closely. Hence, one may interpret S as an asymptotic curve
for H—0. The fact that curves for larger values of H cross
the asymptotic curve indicates that L is a double valued
function of H at constant B. This is illustrated more clearly
in Fig. 11. Even though values of H<0.001 are too small for
practical applications in the microwave region, the asymp-
totic curve has served occasionally as a rather successful pre-
dictor of the rejection frequency. This is explained by the
crossover of the asymptote by the actual curves at values of
H two orders of magnitude larger than those at which final
approach. to the asymptote occurs.

The calculated results may be given in restricted regions
by simple formulas of the following general form:

L =ay+ ot — a:B + a;HB, (38)

The coefficients {o;}, /=0, ..., 3, are given in Tables I through
1II1. The values obtained from (38) are within 0.5 percent of
those obtained by the variational method if strict adherence
to the specified regions is observed.

The rejection frequency calculated by the variational
method agrees within 1 percent with experimental measure-
ments by DeLoach, Jr.,/!! and also with those performed by
this author. The latter are summarized in Table IV.
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o3ie T T T T T T TABLE Il
245500 : Zy=92.6 ohms, ¢;=1.00
0312 € 1.0
€g=10 B € Ry* Rat g ay s as
0.308
1.00 1 I 0.378 0.126 0.873 1.297
i 1.00 11 I 0.374 0.216 0.805 0.962
0304 - e iy ind v e e e Sk el ek 1.00 I 11 0.344 0.407 0.450 —1.423
L ~1_ | 5015 4500 I 1 0.377 0.150  0.799 0.101
0300 ™~ 500 II I 0.374 0.201  0.822 1.320
- N ) 5.00 II 11 0.344 0.375 0.408 —1.397
0.296 X\ / *Ru: 1 —0.03<H<0.05
- _— . I1—0.05< H<0.10
0.292 t Rg: 1 —0.005<B<0.070
| ] 11--0.070<£B<0.150
| NN NN RN
10-4 2 4 6 003 2 H 4 6 |02 2 4 6 ol
Fig. 11. Normalized cavity length versus nor-
malized half-width of cavity. TABLE IV
€o=1.00, ¢=1.00
2a 2b 2d 2k fe* Sut (=1 fn
TABLE 1 (inch) (inch) (inch) (inch) (GHz) (GHz) (percent)
Zy,=50 obms, ¢,=1.00 0.217 0.50 6.000 0.772 1.557  1.557 0.00
0.217 0.500 6.000 1.455 1.623 1.622 0.06
¢  Ra* Rzt - o o s 0.869 2.000 6.000 1.196 1.829  1.828 —0.05
0.869 2.000 6.000 0.054 1.770 1.767 —0.17
1.00 I 11 0.363 0.356 0.564 -0.952 0.869 2.000 6.000 0.802 1.770 1.771 0.06
1.00 I I 0.343 0.412 0.364 —1.577 0.087 0.200 8.000 2.017 1.185 1.186 0.08
1.00 11 1 0.375 0.219 0.879 3,108 0.087 0.200 8.000 0.322 1.133 1.136 0.26
1.00 1T It 0.365 0.322 0.659 0.901 0.869 2.000 6.590 0.724 1.563 1.563 0.00
1.00 1T 11T 0.343 0.429 0.432 —0.329 0.869 2.000 7.749 0.724 1.284 1.285 0.08
2.32 1 11 0.361 0.384 0.520 —1.480 :
2.32 I 11T 0.338 0.439 0.306 —-1.970 * Calculated resonant frequency.
2.32 I I 0.375 0.220  0.872 3.051 t Measured resonant frequency.
2.32 11 11 0.364 0.329 0.632 0.719
2.32 1L 1 0.336 0.482 0.363 —0.874
5.00 1 11 0.359 0.407 0.486 —1.881
5.00 I 1 0.336 0.447 0.269 —~2.160
5.00 1I I 0.375 0.221 0.868 2.949 g
5.00 I I 0.363  0.335  0.611 0.579 UMMARY AND CONCLUSIONS
_5 .00 1t 11 0.335 0.464 0.312  —0.810 The resonant frequency of a microwave radial line band
*Ry: 1 —0.03<H<0.05 rejection filter in a coaxial waveguide has been calculated by
I —0.05<H<0.10 a variational method. The dependence of the resonant fre-
T Rs: %I :88;% g 28'% quency on the physical parameters of the structure has been
II—0.10< B<0.20; L>0.290 investigated and presented both graphically and analytically.
It has been shown that the resonant frequency calculated by
viewing the cylindrical cavity as a shorted radial transmis-
sion line is asymptotic to the true frequency when the cavity
TABLE II width is infinitesimally small with respect to the wavelength.
Zo=50 ohms, ¢, ~2.32 Further, an explanation has been given why good results are
obtained under certain conditions when total neglect of the
e Ry* Rpt a o o as fringing fields is not justified. A comparison of calculated
2 1 ; I 0379 0145  0.849 1463 re§1}111_ts 1vsnth experimental measurements shows agreement
232 1 I 0362 0280 0564 —1.085  Within 1 percent.
2.32 1 1 0.376 0.203 0.884 2.166
2.32 11 11 0.361 0.319 0.624 —0.014 ACKNOWLEDGMENT
2.32 I i1l 0.342 0.387 0.437 —0.843

*Ry: 1 —0.03<H<Z0.05
II —0.05<HL0.10
tRg: T —0.005<B<0.06
IT —0.06<8<0.11

1I1—0.11<B<0.185; L>0.285
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the measurements.
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A Computer Designed, 720 to 1 Microwave
Compression Filter

HARRY S. HEWITT, MEMBER, IEEE

Abstract—Compression filters with bandwidths up to 1000 MHz have
application in high-resolution radar systems and rapid-scan receiver
systems. A technique is presented for realizing a microwave linear delay
(quadratic phase) versus frequency compression filter with sufficient delay
accuracy to make compression ratios of up to 1000 to 1 feasible.

The dispersive element in the compression filter is a silver tape with
its broad side placed perpendicularly between the ground planes (instead
of parallel, as in conventional stripline). The tape is folded back and forth
upon itself in such a way that substantial coupling takes place between
adjacent turns of the tape. A computer program has been written to
determine the dimensions of the tape to achieve a linear delay versus fre-
quency characteristic.

A folded tape compression filter was constructed with a differential
delay of 1.2 1:s over a bandwidth of 600 MHz centered at 1350 MHz giving
a compression factor of 720 to 1. This filter was constructed in four iden-
tical sections, each section of which had a differential delay of 0.3 us over
the same bandwidth as the complete filter. The entire filter (four sections)
occupies a volume about 16 by 4 by 5 inches. Measurement data are pre-
sented which illustrate that the desired accurate delay characteristic was
realized to within the +1 ns measurement uncertainty.

INTRODUCTION

N RECENT YEARS much attention has been focused
j[[ on the use of pulse compression in “Chirp” radar sys-
tems. Typical pulse compression filters used in these
systems have bandwidths of a few megahertz or less and
differential time delays of up to several hundred micro-

Manuscript received May 17, 1967; revised July 24, 1967.
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seconds. Somewhat less attention has been given to the
development of radar and receiver systems using microwave
compression filters, one reason probably being that no satis-
factory tehnique for designing and constructing compression
filters with bandwidths of hundreds of megahertz existed.

The pulse compression filter is a device for decreasing the
time duration of, or compressing, a frequency modulated
pulse of RF energy. This compressed pulse is used to improve
the resolution or scan-rate capability of systerns which use
an RF pulse to indicate some parameter to be measured.

The search for devices which could be used to make micro-
wave pulse compression filters has led investigators to study
a variety of techniques. These include the dispersive helix;
the tapped delay line with tuned taps;!2:[¥ the tapped delay
line with broadband untuned taps ;[ first- and second-order,
allpass quaterwave coupled transmission lines;® the
yttrium-iron-garnet delay line;!® and the folded tape
meander line (FTML).1" The FTML was chosen as a de-
sirable structure for implementing a large time-bandwidth
product compression filter because of its relatively easily
predictable performance, its compact size, and its compara-
tively low cost.

THE FoLDED TAPE MEANDER LINE

Fig. 1 shows the physical configuration of the FTML and
defines the dimensions used in equations to follow. The
meander line is totally immersed in dielectric; this assump-
tion is maintained throughout the text of this paper. In prac-
tice, this is quite easy to accomplish; two sheets of dielectric



